{"id":1775,"date":"2014-01-03T10:35:34","date_gmt":"2014-01-03T10:35:34","guid":{"rendered":"http:\/\/maths.crusoecollege.vic.edu.au\/?page_id=1775"},"modified":"2016-02-08T03:15:25","modified_gmt":"2016-02-08T03:15:25","slug":"s1t7g","status":"publish","type":"page","link":"http:\/\/maths.crusoecollege.vic.edu.au\/s1t7g\/","title":{"rendered":"Semester 1 Topic 7 Level G"},"content":{"rendered":"\n\n\n\n\n\n\n\n\n\n\n
Task Name : <\/b>Fractions, Decimals, Percentages Doughnuts<\/td>\nTask Level : <\/b>G (Grade 6)<\/td>\n<\/tr>\n
Semester : <\/b>1<\/td>\nTopic :<\/b> Decimals and Percentages<\/td>\nVC Strand : <\/b>Fractions and Decimals<\/td>\n<\/tr>\n
Web Address : <\/b>http:\/\/maths.crusoecollege.vic.edu.au\/fdG<\/a><\/td>\n<\/tr>\n
Equipment Needed : <\/b>Photocopies of tenths, hundredths and thousandths squares. Sixteen doughnut puzzle pieces.<\/td>\n<\/tr>\n
Victorian Curriculum outcome : <\/b>Make connections between equivalent fractions, decimals and percentages.<\/td>\n<\/tr>\n
Task description :<\/b> Students solve the doughnut puzzle by creating four four-domino doughnuts where the meeting ends are equivalent. Once they have done this, they prove each connection using decimal and fraction squares.<\/td>\n<\/tr>\n
Assessment options : <\/b>Photograph of doughnuts with proofs.<\/td>\n<\/tr>\n
Teacher notes : <\/b>Some proofs are much harder than others: particularly those that involve thirds. Encourage students to see that percentage means \u201cout of 100\u201d and so all percentages should be done with a hundredths square.<\/td>\n<\/tr>\n
Downloads :\u00a0<\/b>Doughnut percents cards<\/a> Fractions and decimal squares<\/a><\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Task Name : Fractions, Decimals, Percentages Doughnuts Task Level : G (Grade 6) Semester : 1 Topic : Decimals and Percentages VC Strand : Fractions and Decimals Web…<\/p>\n","protected":false},"author":2,"featured_media":0,"parent":0,"menu_order":0,"comment_status":"closed","ping_status":"closed","template":"","meta":{"footnotes":""},"_links":{"self":[{"href":"http:\/\/maths.crusoecollege.vic.edu.au\/wp-json\/wp\/v2\/pages\/1775"}],"collection":[{"href":"http:\/\/maths.crusoecollege.vic.edu.au\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"http:\/\/maths.crusoecollege.vic.edu.au\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"http:\/\/maths.crusoecollege.vic.edu.au\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"http:\/\/maths.crusoecollege.vic.edu.au\/wp-json\/wp\/v2\/comments?post=1775"}],"version-history":[{"count":1,"href":"http:\/\/maths.crusoecollege.vic.edu.au\/wp-json\/wp\/v2\/pages\/1775\/revisions"}],"predecessor-version":[{"id":2931,"href":"http:\/\/maths.crusoecollege.vic.edu.au\/wp-json\/wp\/v2\/pages\/1775\/revisions\/2931"}],"wp:attachment":[{"href":"http:\/\/maths.crusoecollege.vic.edu.au\/wp-json\/wp\/v2\/media?parent=1775"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}