1. Label the opposite, adjacent and hypotenuse in each of the following triangles.

а

b

С

2. An easy way to remember the trigonometric ratios is **SOH-CAH-TOA**. Complete the following to show what this is short for:

$$\sin \theta = \frac{opp}{}$$

$$\underline{}\theta = \frac{\theta}{h\nu\rho}$$

3. Use a calculator to find the following (round to 2 decimal places):

- 4. The trigonometric ratios can be used to find unknown sides in a right-angled triangle.
 - e.g. Find the hypotenuse:

1. Label the diagram. θ = 55°

(the angle we are interested in), 12 is opposite and h is already labelled. The other side is adjacent.

- **2. Choose the trigonometric ratio.**Since we know the opposite (12) and want to find the hypotenuse (h), we will use sin (SOH).
- 3. Substitute and solve.

$$\sin 55^{\circ} = \frac{12}{h}$$

$$h = \frac{12}{\sin 55^{\circ}}$$

$$= \frac{12}{0.819...}$$

$$= 14.6492...$$

 ≈ 14.65 (2 decimal places)

Find the value of x in each of the following triangles using the three steps above.

а

b

C

